
The COM Specification Chapter 4. COM Applications

1COM Applications
All applications, that is, running programs that define a task or a process be they client or servers, have
specific responsibilities. This chapter examines the roles and responsibilities of all COM applications and
the necessary COM library support functions for those responsibilities.
In short, any application that makes use of COM, client or server, has three specific responsibilities to
insure proper operation with other components:
1. On application startup, verify that the COM Library version is new enough to support the

functionality expected by the application. In general, an application can use an updated version
of the library but not an older one or one that has undergone a major version change.

2. On application startup, initialize the COM Library.
3. On application shutdown, uninitialize the COM Library to allow it to free resources and perform any

cleanup operations as necessary.
Each of these responsibilities requires support from the COM Library itself as detailed in the following
sections. For convenience, initialization and uninitialization are described together. Additional COM
Library functions related to initialization and memory management are also given in this chapter.

1.1Verifying the COM Library Version
The COM Library defines a major version number and a minor version number and provide these in a
header file that is compiled with the COM application. Any application must then compare these
compiled numbers with the version of the available library and if the available library is incompatible the
application cannot use COM. Similarly, a DLL should check the library version in its initialization code
and fail loading if the library is incompatible or otherwise disable its COM functionality. The current
major and minor version numbers are retrieved from COM Library with the function CoBuildVersion.

CoBuildVersion
DWORD CoBuildVersion(void)
Return the major and the minor version number of the Component Object Model library.
Argument Type Description
return value DWORD A 32 bit value whose high-order 16 bits are the major version number

(rmm) and whose low-order 16 bits are the minor version number (rup).
An application or DLL can run against only one major version of the COM Library but can run against
any minor version (possibly disabling specific minor features that are not available in a builds before a
given minor number). Therefore during startup (initialization for DLLs), all COM applications must
include code similar to the following:

DWORD dwBuildVersion;
dwBuildVersion=CoBuildVersion();
if (HIWORD(dwBuildVersion)!=rmm)
 //Error: Can’t run against wrong major version
if (LOWORD(dwBuildVersion) < rup)
 //Disable features dependent on the rup version of COM (or simply fail)
//Continue initialization

1.2Library Initialization / Uninitialization
Once the application has determined that it can run against the currently available version of the COM
Library, it must initialize the library through a function called CoInitialize. Calls made to CoInitialize must be
matched with calls to CoUninitialize to allow the COM Library to perform any final cleanup.

DRAFT Page: 1 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 4. COM Applications The COM Specification

CoInitialize
HRESULT CoInitialize(pReserved)
Initialize the Common Object Model library so that it can be used. With the exception of CoBuildVersion,
this function must be called by applications before any other function in the library. Calls to CoInitialize
must be balanced by corresponding calls to CoUninitialize. Typically, CoInitialize is called only once by the
process that wants to use the COM library, although multiple calls can be made. Subsequent calls to
CoInitialize return S_FALSE.
Argument Type Description
pReserved void* Reserved for future use. Presently, must be NULL.
Return Value Meaning
S_OK Success. Initialization has succeeded. This was the first initialization call in

this process.
S_FALSE Success. Initialization has succeeded, but this was not the first initialization

call in this process.
E_UNEXPECTED An unknown error occurred.

CoUninitialize
void CoUninitialize(void)
Shuts down the Component Object Model library, thus freeing any resources that it maintains. Since
CoInitialize and CoUninitialize calls must be balanced, only the CoUninitialize call that corresponds to the
CoInitialize call that actually did the initialization will uninitialize the library.

1.3Memory Management
As was articulated earlier in this specification, when ownership of allocated memory is passed through an
interface, COM requires1 that the memory be allocated with a specific “task allocator.” Most general
purpose access to the task allocator is provided through the IMalloc interface instance returned from
CoGetMalloc. Simple shortcut allocation and freeing APIs are also provided in the form of CoTaskMemAlloc
and CoTaskMemFree.

1.3.1IMalloc Interface
The IMalloc interface is an abstraction of familiar memory-allocation primitives that fit into the COM
interface model. Like all other interface, it is derived from IUnknown and correspondingly includes the
AddRef, Release, and QueryInterface member functions. The first three IMalloc-specific functions in this
interface are merely simple abstractions of the familiar C-library functions malloc, realloc, and free.

[
 local,
 object,
 uuid(00000002-0000-0000-C000-000000000046)
]
interface IMalloc : IUnknown {

void * Alloc([in] ULONG cb);
void * Realloc([in] void * pv, [in] ULONG cb);
void Free([in] void* pv);
ULONG GetSize([in] void * pv);
int DidAlloc([in] void * pv);
void HeapMinimize(void);
};

IMalloc::Alloc
void * IMalloc::Alloc(cb)
Allocate a memory block of at least cb bytes. The initial contents of the returned memory block are
undefined. Specifically, it is not guaranteed that the block is zeroed. The block actually allocated may be
1 In general, though, precisely, one can invent interfaces which choose to violate this rule. However, such interfaces are, for

example, unlikely to have their remoting proxies and stubs generated with common tools.

Copyright © 1995 Microsoft Corporation Page: 2 DRAFT
All Rights Reserved

The COM Specification Chapter 4. COM Applications

larger than cb bytes because of space required for alignment and for maintenance information. If cb is 0,
Alloc allocates a zero-length item and returns a valid pointer to that item. This function returns NULL if
there is insufficient memory available.
Callers must always check the return from the this function, even if the amount of memory requested is
small.
Argument Type Description
cb ULONG The number of bytes to allocate.
return value void * The allocated memory block, or NULL if insufficient memory exists.

IMalloc::Free
void IMalloc::Free(pv)
Deallocate a memory block. The pv argument points to a memory block previously allocated through a
call to IMalloc::Alloc or IMalloc::Realloc. The number of bytes freed is the number of bytes with which the
block was originally allocated (or reallocated, in the case of Realloc). After the call, the pv parameter is
invalid, and can no longer be used. pv may be NULL, in which case this function is a no-op.
Argument Type Description
pv void * Pointer to the block to free. May be NULL.

IMalloc::Realloc
void * IMalloc::Realloc(pv, cb)
Change the size of a previously allocated memory block. The pv argument points to the beginning of the
memory block. If pv is NULL, Realloc functions in the same way as IMalloc::Alloc and allocates a new block
of cb bytes. If pv is not NULL, it should be a pointer returned by a prior call to IMalloc::Alloc.
The cb argument gives the new size of the block in bytes. The contents of the block are unchanged up to
the shorter of the new and old sizes, although the new block may be in a different location. Because the
new block can be in a new memory location, the pointer returned by Realloc is not guaranteed to be the
pointer passed through the pv argument. If pv is not NULL and cb is 0, then the memory pointed to by pv
is freed.
Realloc returns a void pointer to the reallocated (and possibly moved) memory block. The return value is
NULL if the size is zero and the buffer argument is not NULL, or if there is not enough available
memory to expand the block to the given size. In the first case, the original block is freed. In the second,
the original block is unchanged.
The storage space pointed to by the return value is guaranteed to be suitably aligned for storage of any
type of object. To get a pointer to a type other than void, use a type cast on the return value.
Argument Type Description
pv void * Pointer to the block to reallocate. May be NULL.
cb ULONG The new size in bytes to allocate. May be zero.
return value void * The reallocated memory block, or NULL.

IMalloc::GetSize
ULONG IMalloc::GetSize(pv)
Return the size, in bytes, of the memory block allocated by a previous call to IMalloc::Alloc or IMalloc::Realloc
on this memory manager.

DRAFT Page: 3 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 4. COM Applications The COM Specification

Argument Type Description
pv void * The pointer to be tested. May be NULL, in which case -1 is returned.
return value ULONG The size of the allocated memory block

IMalloc::DidAlloc
int IMalloc::DidAlloc(pv)
This function answers as whether or not the indicated memory pointer pv was allocated by the given
allocator, if the allocator is able to determine that fact (many memory allocators will not be able to do
so).
The values 1 (one) and 0 (zero) are returned as “did alloc” and “did not alloc” answers respectively; -1
(minus one) is returned if the IMalloc implementation is unable to determine whether it allocated the
pointer or not.
Argument Type Description
pv void * The pointer to be tested. May be NULL, in which case -1 is returned.
return value int -1, 0, 1

IMalloc::HeapMinimize
void IMalloc::HeapMinimize()
Minimize the heap as much as possible for this allocator by, for example, releasing unused memory in the
heap to the operating system. This is useful in cases when a lot of allocations have been freed (using
IMalloc::Free) and the application wants to release the freed memory back to the operating system so that it
is available for other purposes.

1.3.2COM Library Memory Management Functions

CoGetMalloc
HRESULT CoGetMalloc(dwMemContext, ppMalloc)
This function retrieves from the COM library either the task memory allocator an optionally-provided
shared memory allocator. The particular allocator of interest is indicated by the dwMemContext parameter.
Legal values for this parameter are taken from the enumeration MEMCTX:

typedef enum tagMEMCTX {
 MEMCTX_TASK = 1, // task (private) memory
 MEMCTX_SHARED = 2, // shared memory (between processes)
 MEMCTX_MACSYSTEM = 3, // on the mac, the system heap
 // these are mostly for internal use...
 MEMCTX_UNKNOWN = -1, // unknown context (when asked about it)
 MEMCTX_SAME = -2, // same context (as some other pointer)
 } MEMCTX;

MEMCTX_TASK returns the task allocator. If CoInitialize has not yet been called, NULL we be stored in
ppMalloc and CO_E_NOTINITIALIZED returned from the function.
MEMCTX_SHARED returns an optionally-provided shared allocator; if the shared allocator is not supported,
E_INVALIDARG is returned. When supported, the shared allocator returned by this function is an COM-
provided implementation of IMalloc interface, one which allocates memory in such a way that it can be
accessed by other process on the current machine simply by conveying the pointer to said applications. 2

Further, memory allocated by this shared allocator in one application may be freed by the shared
allocator in another. Except when a NULL pointer is passed, the shared memory allocator never answers -1
to IMalloc::DidAlloc; it always indicates that either did or did not allocate the passed pointer.

2 That is, the memory resides at the same address in all processes.

Copyright © 1995 Microsoft Corporation Page: 4 DRAFT
All Rights Reserved

The COM Specification Chapter 4. COM Applications

Argument Type Description
dwMemContext DWORD A value from the enumeration MEMCTX.
ppMalloc IMalloc ** The place in which the memory allocator should be returned.
Return Value Meaning
S_OK Success. The requested allocator was returned.
CO_E_NOTINITIALIZED The COM library has not been initialized.
E_INVALIDARG An invalid argument was passed.
E_UNEXPECTED An unknown error occurred.

CoGetCurrentProcess
DWORD CoGetCurrentProcess(void)
Return a value unique to the current process. More precisely, return a value unique to the current process
to the degree that it will not be reused until 232 further processes have been created on the current
workstation.
Argument Type Description
return value DWORD A value unique to the current process.

CoTaskMemAlloc
LPVOID CoTaskMemAlloc(cb)
Semantically identical to retrieving the current task allocator with CoGetMalloc, invoking IMalloc::Alloc on
that pointer with the same parameters, then releasing the IMalloc pointer.
Argument Type Description
cb ULONG The number of bytes to allocate.
return value void * The allocated memory block, or NULL if insufficient memory exists.

CoTaskMemFree
void CoTaskMemFree(pv)
Semantically identical to retrieving the current task allocator with CoGetMalloc, invoking IMalloc::Free on
that pointer with the same parameters, then releasing the IMalloc pointer.
Argument Type Description
pv void * Pointer to the block to free. May be NULL.

CoTaskMemRealloc
void CoTaskMemRealloc(pv, cb)
Semantically identical to retrieving the current task allocator with CoGetMalloc, invoking IMalloc::Realloc on
that pointer with the same parameters, then releasing the IMalloc pointer.
Argument Type Description
pv void * Pointer to the block to reallocate. May be NULL.
cb ULONG The new size in bytes to allocate. May be zero.
return value void * The reallocated memory block, or NULL.

1.4Memory Allocation Example
An object may need to pass memory between it and the client at some point in the object’s lifetime—this
applies to in-process as well as out-of-process servers. When such a situation arises the object must use
the task allocator as described in Chapter 2. That is, the object must allocate memory whose ownership is
transferred from one party to another through an interface function by using the local task allocator.

DRAFT Page: 5 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 4. COM Applications The COM Specification

CoGetMalloc provides a convenient way for objects to allocate working memory as well. For example,
when the TextRender object (see Chapter 3, “Designing and Implementing Objects”) under consideration
in this document loads text from a file in the function IPersistFile::Load (that is, CTextRender::Load) it will
want to make a memory copy of that text. It would use the task allocator for this purpose as illustrated in
the following code (unnecessary details of opening files and reading data are omitted for simplicity):

//Implementation of IPersistFile::Load
HRESULT CTextRender::Load(char *pszFile, DWORD grfMode) {

int hFile;
DWORD cch;
IMalloc * pIMalloc;
HRESULT hr;

/*
 * Open the file and seek to the end to set the
 * cch variable to the length of the file.
 */

hr=CoGetMalloc(MEMCTX_TASK, &pIMalloc);

if (FAILED(hr))
//Close file and return failure

psz=pIMalloc->Alloc(cch);
pIMalloc->Release();

if (NULL==psz)
//Close file and return failure

//Read text into psz buffer and close file

//Save memory pointer and return success
m_pszText=psz;
return NOERROR;
}

If an object will make many allocations throughout it’s lifetime, it makes sense to call CoGetMalloc once
when the object is created, store the IMalloc pointer in the object (m_pIMalloc or such), and call
IMalloc::Release when the object is destroyed. Alternatively, the APIs CoTaskMemAlloc and its friends may be
used.

Copyright © 1995 Microsoft Corporation Page: 6 DRAFT
All Rights Reserved

	1 COM Applications
	1.1 Verifying the COM Library Version
	CoBuildVersion

	1.2 Library Initialization / Uninitialization
	CoInitialize
	CoUninitialize

	1.3 Memory Management
	1.3.1 IMalloc Interface
	IMalloc::Alloc
	IMalloc::Free
	IMalloc::Realloc
	IMalloc::GetSize
	IMalloc::DidAlloc
	IMalloc::HeapMinimize

	1.3.2 COM Library Memory Management Functions
	CoGetMalloc
	CoGetCurrentProcess
	CoTaskMemAlloc
	CoTaskMemFree
	CoTaskMemRealloc

	1.4 Memory Allocation Example

